Hybrid Cross-Entropy Method/Hopfield Neural Network for Combinatorial Optimization Problems

نویسندگان

  • Emilio G. Ortíz-García
  • Ángel M. Pérez-Bellido
چکیده

This paper presents a novel hybrid algorithm for combinatorial optimization problems based on mixing the cross-entropy (CE) method and a Hopfield neural network. The algorithm uses the CE method as a global search procedure, whereas the Hopfield network is used to solve the constraints associated to the problems. We have shown the validity of our approach in several instance of the generalized frequency assignment problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Performance of Heuristic Algorithms by Lebesgue Spectrum Filter

The previous researches on the chaotic CDMA have theoretically derived the chaotic sequences having the minimum asynchronous cross-correlation. To minimize the asynchronous cross-correlation, autocorrelation of each sequence have to be C (τ) ≈ C × rτ , r = −2 + √ 3, dumped oscillation with increase of the lag τ. There are several methods to generate such sequences, using a chaotic map, using th...

متن کامل

Extended Hopfield models for combinatorial optimization

The extended Hopfield neural network proposed by Abe et al. for solving combinatorial optimization problems with equality and/or inequality constraints has the drawback of being frequently stabilized in states with neurons of ambiguous classification as active or inactive. We introduce in the model a competitive activation mechanism and we derive a new expression of the penalty energy allowing ...

متن کامل

Neural Techniques for Combinatorial Optimization with Applications - Neural Networks, IEEE Transactions on

After more than a decade of research, there now exist several neural-network techniques for solving NP-hard combinatorial optimization problems. Hopfield networks and selforganizing maps are the two main categories into which most of the approaches can be divided. Criticism of these approaches includes the tendency of the Hopfield network to produce infeasible solutions, and the lack of general...

متن کامل

"Optimal" Hopfield network for combinatorial optimization with linear cost function

An "optimal" Hopfield network is presented for many of combinatorial optimization problems with linear cost function. It is proved that a vertex of the network state hypercube is asymptotically stable if and only if it is an optimal solution to the problem. That is, one can always obtain an optimal solution whenever the network converges to a vertex. In this sense, this network can be called th...

متن کامل

Incorporating Chaos into the Hopfield Neural Network for Combinatorial Optimisation

Various approaches of incorporating chaos into artificial neural networks have recently been proposed, and used successfully to solve combinatorial optimisation problems. This paper investigates three such approaches: 1) Chen & Aihara's transiently chaotic neural network with chaotic simulated annealing, which has a gradually decaying negative selfcoupling term; 2) Wang & Smith's chaotic simula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007